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Diffusion through a multilayered material is analysed by means of  the Laplace transformation. An 
algorithm using a new method for numerical inversion of  the Laplace transform is successfully devel- 
oped for solving the diffusion equations. The procedure is applied to an analysis of  hydrogen permea- 
tion through a simple mulilayered material related to electrochemical testing. The problem appears 
simple, but  the exact analytical solution is difficult; the present technique makes it possible to solve 
this problem while retaining a part  of  the advantage of  the analytical method. The results are com- 
pared with results obtained by the conventional analytical method,  which is based on diffusion 
through a single layer. The applicability and limit of  use of  the conventional analytical method is 
also investigated. 
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approximation of parameter in the FILT 
concentration gradient in the ith layer at steady 
state 
dimensionless concentration gradient at steady 
state, lmai/ c s k i 
concentration at the left-hand end of the layer i 
at steady state li 
dimensionless hi, bi/cs lm 
concentration in the ith layer n 
initial concentration at the left-hand end of s 
multilayer Si 
concentration at the left-hand end of multilayer t 
dimensionless concentration, ci/ cs xg 
the Laplace transformation of concentration C i J(~ 
dimensionless initial concentration, Co/Cs 
diffusion coefficient in the ith layer Greek 
diffusion coefficient in a reference layer m c~ i 

parameter, e ~x/7~'~i 7 
function 
the Laplace transform of functionf(t) (~i 
coefficient determined by boundary conditions ~- 

l. Introduction 

Diffusion problems are often encountered in electro- 
chemical systems. Both analytical and numerical 
methods are employed for solving such problems. 
The advantages of the analytical method are that 
the solution is strictly correct, and that the physical 
significance of the solution is usually explicit and, 
hence, it is possible to obtain an approximate form 
which is easy to handle. The Laplace transformation 
is frequently utilized as an analytical method to solve 
partial differential equations. However, there are 

coefficient determined by boundary conditions 
flux 
flux under the constant flux boundary condition 
dimensionless flux, lm j /Dmcs 
dimensionless flux under the constant flux 
boundary condition, lmJo/Dmcs 
distribution coefficient at the ith interface, 
Ci+ljx~+~=0/Cilxi=~, 
thickness of the ith layer 
thickness of a reference layer m 
the number of layers 
variable for the Laplace transformation 
parameter, X/~/c~i 
time 
distance from the left-hand end of the ith layer 
dimensionless distance, xi/lm 

symbols 
dimensionless diffusion coefficient, Di/D m 
large real number for the inversion of the 
Laplace transform 
dimensionless thickness, li/Im 
dimensionless time, Dmt/l 2 

sometimes difficulties in the mathematical analysis of 
diffusion equations for multilayered phases even if a 
one-dimensional problem is considered. The diffi- 
culties exist mainly in the inversion. It is often 
difficult to obtain solutions in complicated problems. 
Moreover, it may be difficult to discern the physical 
significance of the solution, even if the solution is 
available. For example, the solution of one- 
dimensional diffusion equations for a system consist- 
ing of only two layers contains a series of roots [1]. 
In consequence, a numerical method must be used 
to obtain the roots; this procedure may impair the 
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precision of the analytical solution. Thus, the analyti- 
cal method is not always applicable to all systems, 
particularly to complicated ones. Alternatively, a 
technique using numerical inversion of the Laplace 
transform may extend the possibility of the Laplace 
transformation technique while retaining a part of 
the strictness of the analytical method. There seems 
to be no general technique for numerical inversion 
of the Laplace transform because of the ill- 
conditioned nature [2], although many efforts have 
been made, where functions such as Laguerre's poly- 
nomial and Fourier series were employed for the 
inversion [3-5]. Their applications are, however, 
restricted because there are problems of conver- 
gence, which cannot be attained depending on the 
type of image function to be treated, truncation 
errors, and so on. However, Hosono [6] has devel- 
oped a new algorithm which is applicable to various 
types of Laplace transform numerical inversions 
although his applications were limited to simple prob- 
lems. This inversion procedure is applied to the analy- 
sis of diffusion through a multilayer in the present 
study. 

Electrochemical testing for hydrogen permeation 
using a bipolar cell developed by Devanathan and 
Stachurski [7] is one of the most popular techniques 
to evaluate the resistance of steel or other metallic 
materials against hydrogen induced cracking or 
embrittlement. The test specimen is normally plated 
with foreign metal which is resistant to corrosion. 
One surface of the specimen is polarized cathodically 
to generate hydrogen and the other surface is polar- 
ized anodically enough to oxidize hydrogen passing 
through the specimen so that the concentration at 
the surface is zero. Therefore, the specimen has a 
multilayered structure: test material and plated layers 
on the surface. Hydrogen permeation through it is a 
good example of diffusion through a multilayer if 
the diffusion process controls the permeation rate 
[8]. Since a thin test piece is employed, a one- 
dimensional diffusion equation may be used for the 
analysis. An analytical solution for diffusion through 
a single layer was given by McBreen et aI. [8] and 
then Nanis et al. [9] presented a correct version; 

Layer no, 1 

c 1 = c  s 

Catholyte 

H 

H++e --~ H 

verification and modifications have been also 
reported [10-12]. Approximate forms of the exact 
solution are often accommodated to systems consist- 
ing of multilayers on the assumption that the coating 
layer is thin and the coating material does not have a 
very small diffusion coefficient compared to that of the 
test specimen. This assumption is appropriate in many 
systems. However, it must be noted that there are 
some limits in applying the single layer approxi- 
mation to multilayer systems. To know the limits or 
to obtain diffusion parameters of a thin coating layer 
itself, it is necessary to solve diffusion problems for 
multilayered systems. However, it is hard to find 
studies treating diffusion problems through a multi- 
layer relating to hydrogen permeation, though Song 
and Pyun treated a system with a bilayer by the finite 
difference method [13]. In the present study, an analy- 
sis to solve diffusion problems through multilayered 
materials is presented using numerical inversion of 
the Laplace transform and the treatment is applied 
to verify the conditions of electrochemical testing for 
hydrogen permeation. 

2. Analytical procedures 

A multilayer system, which is simple but cannot be 
solved analytically, is treated: one-dimensional dif- 
fusion through a multilayered wall composed of n 
layers of different thickness, li, where i denotes the 
number of the layer from the left-hand side (Fig. 1). 
In the case of hydrogen permeation, hydrogen is elec- 
trochemically evolved at this side, and a part of the 
hydrogen adsorbed on the surface is dissolved into 
the material. In consequence, diffusion of hydrogen 
takes place from left to right. The system is at steady 
state at t < 0 and each layer maintains a linear con- 
centration distribution: aix  i + bi, where xi is distance 
from the left-hand end of ith layer. The concentration 
at the left-hand end of the sample is ¢0 (= bl) at time 
t < 0, and is then changed to c s at t = 0 (constant con- 
centration boundary condition). The concentration at 
the right-hand end is zero during the experiment by 
applying an anodic potential sufficient to oxidize 
arriving hydrogen. The partial differential equations 

2 i-1 i i+1 n 

Ji-1 = Ji ki = Ci+l c i  

= D . ~  
at ~ axi2 

x i=O # 

Anolyte 

H - ~  H++e 

On= 0 

I 
Fig. i. Schematic diagram of diffusion 
through a multilayer and its parameters. 
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and the initial and boundary conditions are repre- 
sented by Equations 1, 2 and 3, respectively, where 
dimensionless parameters are used: 

OC i 02Ci 
0 <~Xi <~6i ( i =  1,n) (1) Or - ai OX 2 

Initial conditions: 

Ci = A,X,  + Bi (i = 1, n) C,[xo=6. = 0 (2) 

Boundary conditions: 

C1 [x~ =0 = 1 (3a) 

C, fx=a. = 0 (3b) 

C i l g i = o = k i _ l C i _ l l X , _ , = ~  (i = 2,n) 

(3c) 

OCi x; =o OCi- 1 x,_ (i = 2, n) 

(3d) 

Parameters for the initial concentration distribution, 
3 i and Bi can be determined by solving the ordinary 
differential equation at steady state. Subscript m 
denotes a reference layer which is chosen in the n 
layers. 

The Laplace transformation reduces Equation 1 to 
an ordinary differential equation: 

d2Ci = __1 (sCi - AiXi - Bi) 
dXZi ai 

0 <~ Xi <~ ~5i (i = 1, n) (4) 

The boundary conditions are 

1 
Cllx, =0 = - (Sa) 

s 

C,[x=e.  = 0 (Sb) 

CiIx;=0 = ki-lCi-llZ,_l=e,_l (i = 2 , n )  

(5c) 

dCi I = dCi-  1 (i = 2, n) 
ai~ff//Ix=0 ai 1 dXi_--~l I.~i_t=LSi_i 

(5d) 

The solution with boundary conditions Equation 5 
gives as Equation 6 in the generalized form: 

¢i = gi e ~ x l  + hie sV~xi + 1 (AiX i + Bi ) (6) 
s 

where s is a complex variable for the transformed 
function, and the coefficients gi and hi are given by 
the boundary conditions Equation 5. They produce 
the following equations. 

1 - B1 
gl  + hi  - (7) 

s 

( -k i - lEi  1 -ki-lE~l-1 1 1 ) 
-oli_lai_lEi_ 1 o~i_lSi_lEi-l_l oLiS i --oLiS i 

gi-1 I 

(i = 2, n) (8) 

E~g, + E21hn - An3, + B~ (9) 
s 

where E / =  e ~ a '  and S; = v/s /ai .  The solution of  
these simultaneous equations provides gi and hi and, 
hence, the concentration C/is obtained in its Laplace 
transformed form. 

Another type of  boundary condition which is often 
encountered in electrochemical systems is constant 
flux; substitution of  Equation 10 for Equation 3(a) 
in a set of  equations describing the diffusion problem 
at constant concentration, Equations 1-3, provides 
this situation: 

OCl x, = J0 (10) --OL1 ~ =0 

where J0 = l,,,,jo/Dmcs and j0 is the flux. On using this 
boundary condition, Equations 11 and 12 are 
employed instead of  Equations 5(a) and 7; the other 
equations remain the same as those for the constant 
concentration boundary condition problem. That is, 

x, J0 (11) 
- laW7 =0 = 7 

J0 + a l A 1  Slg 1 - Slh 1 - (12) 
cq s 

The inversion theorem of the Laplace transform 
(the Bromwich integral) is given by 

1 ['r+J®F(s)e,td s (13) 
f ( t) = 27j  j.y_j~ 

According to Hosono's  treatment [6], which he called 
FILT (fast inversion of  Laplace transform), a func- 
tion E(st, a) approximates e st if the condition that 
an approximation parameter, a, is greater than the 
real part of  s is fulfilled. 

e a 
E(st, a) = 2 cosh (a - st) (14) 

The equation can be represented also as a series 
expansion (15(a)) or an expansion in partial fractions 
(15(b)): 

E(st, a) = e 't - e-2ae 3't + e-4% 5~t . . . .  (15a) 

= e~ ~ ( -1)n j  (lSb) 
2 n=_ooSt-- { a +  ( n -  0.5)rcj} 

The expression for E(st, a), Equation 14, can be a 
good approximation when a>> Re(st), because 
Equation (15a) approximates e *t under the con- 
dition; we can choose an arbitrary value as the 
adjustable parameter, a. When E(st, a) as Equation 
15(b) is employed in the Bromwich integral instead 
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of e st, integration gives an approximate equation. 
a oc { ( ) }  

f ( t , a ) = t E ( - 1 ) ' I m  F _a+(n-0.5)Trj 
n=l  t 

(16) 

where Im denotes the imaginary part of the complex. 
This approximation, originally proposed by Hosono, 
is used for inversion, instead of the Bromwich 
integral, in the present diffusion problems. The 
numerical inversion of Ci (Equation 6) is accom- 
plished using Equation 16: Ci(s) is introduced into 
Equation 16 after the variable s is substituted by 
{a + ( n -  0.5)Trj}/r; then Ci(r), at a given position 
iV,. and time % is calculated by summing each term 
for n = 1 , . . . .  This procedure is repeated at positions 
and times to be calculated. Furthermore, the permea- 
tion flux, J, which can be compared directly with 
experimental measurements, is also obtained by inver- 
sion of Equation 17. 

de. xo: . (17) 

where J = Imj/Dmcs, and j  is the dimensional flux. 

3. Results and discussion 

The numerical inversion, FILT, was tested using a 
simple diffusion problem: a single layer and constant 
concentration boundary condition. An analytical 
solution has been given [8, 9]; the Laplace transform 
and its inversion of concentration gradient at the 
right-hand end wall, which correspond to dimension- 
less flux in this case, are given as 

x - 1 ( 1 8 )  
=1 vG sinh V~ 

X-- cx~ 2 dC 2 Ze-(2n+~)/4T (19) 

- 1 = ~ n=0 

The dimensionless concentration gradient was calcu- 
lated from Equation 18 where its numerical inversion 
was achieved using FILT; the results were compared 
with those calculated by the analytical solution 
Equation 19 and also by the first term approxi- 
mation, (2/x/~r)exp(-1/4r) ,  as given by Nanis 
et al. [8, 9]. The comparison is presented in Table 1 in 
the dimensionless time range, 0.01 to 1. The calcu- 
lations were performed with double precision; the 
approximation parameter a in Equation 16 was 10 
and the summation was terminated by n = 20 for 
the numerical inversion. The first six terms were 
summed for the analytical solution. The values by 
the numerical inversion agree up to four digits with 
those obtained by the analytical solution, whereas 
the results from the first term approximation deviate 
at large values of ~-. It is necessary, however, to calcu- 
late with high precision in order to obtain the values at 
small r. For example, overflow of calculation 
occurred at ~- smaller than 0.02 when an effective 
range, 10 -38 to 1038 , single precision, was used, 

Table 1. Comparison of the values -dC/dXIx= 1 obtained by the 
FILT, and the analytical solution and the first term approximation 

"r FILT Analytical First term 
solution approximation 

0.01 0.0000 0.0000 0.0000 
0.05 0.0340 0.0340 0.0340 
0.10 0.2929 0.2929 0.2929 
0.20 0.7229 0.7229 0.7229 
0.30 0.8965 0.8965 0.8953 
0.40 0.9614 0.9614 0.9550 
0.50 0.9856 0.9856 0.9679 
0.60 0.9946 0.9946 0.9603 
0.70 0.9980 0.9980 0.9436 
0.80 0.9993 0.9993 0.9230 
0.90 0.9997 0.9997 0.9009 
1.00 1.0000 1.0000 0.8788 

whereas limit of the overflow was improved to 
0.0003 when the range was extended to 10 -30s to 
103°8, double precision. The values at such small r 
would not be required for the analysis because the 
time region corresponds to the very beginning of tem- 
poral flux variation, as described later. Thus, FILT 
works well under the present conditions. 

Permeation of hydrogen through a Fe/Ni bilayer 
system has been analysed numerically by Song and 
Pyun [13] who used the finite difference method. The 
present calculations under constant concentration 
boundary condition reproduced their results well 
under potentiostatic conditions. In such a bilayer 
system, parameters, gi and hi, in the solution of the 
Laplace transform are given explicitly as a function 
of s, where the inversion of Ci can be accomplished 
directly by using Equation 16. On the other hand, 
the calculation becomes difficult when the number of 
layers exceeds two, because the explicit correlation 
of the parameters to s is no longer attained. As a 
result, Ci cannot be explicitly expressed as a function 
of s. In consequence, the parameters, gi and hi, must 
be calculated numerically for each term of n in 
Equation 16 by solving the simultaneous equations 
consisting of Equations 7-9. Since the two para- 
meters, as well as s, are complex numbers, they have 
to be separated by their real and imaginary parts; 
hence, the number of simultaneous equations to be 
solved increases to 4 x n from 2 x n shown in 
Equations 7-9. As an example, the concentration dis- 
tribution of hydrogen in a five-layered system was cal- 
culated under simple conditions as shown in Fig. 2. 
The five layers had the same thickness, the diffusion 
coefficients of the second and fourth layers were five 
times greater than those of the other layers, and the 
distribution coefficient at each interface of two adja- 
cent layers was five. Hydrogen dissolving at the left- 
hand surface of a multilayered material diffuses 
through the layers toward the right-hand end sur- 
face, where hydrogen is consumed by anodic reaction 
to hydrogen ions. The results describe the temporal 
variation of the concentration in each layer well. 
Concentration distributions approach linear as the 
time 7 advances, and finally linear distributions are 
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5 

~Y 

2 

Fig. 2. An example of  concentration distribution in a 
five-layered material. ~-= 0, 0.16, 0.41, 1:0, and 6.5; 
C 0 = 0 ;  k i = 5  ( i = l ,  5); ~ i = l  ( i = l ,  5); a l ,  a3, 
a5 = 1 a n d ~ , a 4 = 5 .  

achieved in all layers at steady state. Though the given 
conditions are simple, this procedure can be applied to 
more complex conditions: multilayers where each 
layer has a different thickness, distribution coeffi- 
cient, and diffusion coefficient, or more multiple 
layers. However, it must be noted that such compli- 
cated conditions may cause overflow during computa- 
tion, as mentioned above. 

The use of  the single layer approximation to deter- 
mine diffusion coefficients for a multilayer is examined 
using a bilayer system. Figure 3 shows an example of 
calculated flux transient under the conditions of 
various diffusion coefficients, a. A small diffusion 
coefficient for a layer causes a very slow change of 
flux for the bilayer. The change becomes fast as the 
diffusion coefficient increases. Finally, there is no 
change with the increase in the diffusion coefficient 
when a exceeds unity, indicating that the layer no 
longer functions as an influential barrier for dif- 
fusion. The ultimate transient feature corresponds to 
that of a single layer; the transient is uniquely fixed 
in the dimensionless treatment. ~-1/2 is considered to 
be a characteristic parameter for diffusion and is 
defined as the dimensionless time at which J = J~/2  
or -dC/dX[x,= 1 = 0.5. When a single layer is 
considered, the 7.1/2 is determined uniquely as 0.139 
(the transient at a = 1 in Fig. 3). The definition for 

7. gives a dimensional diffusion coefficient, D, for 
a single layer. 

7.u2l 2 
D -- (20) 

tl/2 

The tl/2, the dimensional time at whichj  =j~/2 ,  can 
be obtained experimentally, the thickness, l, is 
known, and the 7.1/2 is 0.139, and, hence, the D can be 
determined. 

An erroneous diffusion coefficient will be estimated 
if the single layer approximation is applied to a multi- 
layer system, though the magnitude of error depends 
on the conditions treated. The variations of  7-1/2 are 
shown in Fig. 4 as a function of  distribution coef- 
ficient, k, and diffusion coefficient, a,  where one of 
the parameters is fixed and the conditions of  initial 
concentration Co (= Co/Cs) and thickness 6 are 
assumed, 0 and 0.01, respectively; the latter means 
that the thickness of  a protective coating is a hun- 
dredth of  that of the test specimen. Of the two simpli- 
fied conditions, k =  1 means that there is no 
concentration difference at the interface of  two layers 
and a = 1 is the condition that the two layers have an 
identical diffusion coefficient, which is equivalent to a 
single layer system. When a < 1 or k > 1, 7.1/2 deviates 
from 0.139; the variation of a gives the larger devia- 
tion than the k variation. This deviation causes an 

x 
(3 
C3 
& 

10 100 

' o~ = I1, 105 1 0  - 4  I 

0.1 1.0 
17 

1000 
' I 

k= l  

10.0 

Fig. 3. Concentrat ion gradient as a 
function of  time at the end surface 
with variation of  diffusion coef- 
ficient for a bilayer system: C O = 0, 
k = 1, and 6 = 0.01. The negative 
concentration gradient is equivalent 
to normalized flux J/Jo~. 
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Fig. 4. "q/2 as a function of c~ and k for a bilayer material. Co = 0; 
6 = 0.01. 

erroneous estimation giving a smaller value than the 
actual diffusion coefficient, because the dimensional 
diffusion coefficient, D, is obtained from Equation 
20 and 0.139 is used for 7-]/2 in the single layer approxi- 
mation instead of  the correct value greater than 0.139, 
which is shown in Fig. 4. Thus, under such conditions, 
the multilayer problem must be considered to obtain 
the correct diffusion coefficient when the diffusion 
coefficient of  the thin surface film is smaller than 
that of  the test specimen, or when the concentration 
at the film interface is lower than that of the test 
specimen. The deviation from the single layer 
approximation depends on the conditions to be 
treated, and, hence, the limitation should be tested 
for the respective cases. 

Diffusion parameters, especially the diffusion coef- 
ficient, D, and the surface concentration, % are 
derived from experimental results. Several methods 
have been proposed for their derivation [7, 11, 14]; 
time-lag methods, time constant methods, etc. For  
multilayered systems, the time-lag method has been 
utilized exclusively [13, 15-17], but the principle of  
the method is based on the use of  the steady state con- 
dition though the transient is also utilized. On the 
other hand, the present procedure can be used for 
the determination of diffusion coefficients by the tran- 
sient flux. Three kinds of parameter exist; diffusion 
coefficient, Di, and thickness for each layer, li, and dis- 
tribution coefficient for each interface, ki. Of these, li 
is usually a known parameter. The diffusion coef- 
ficient for a single layer is readily determined, as 
already described. Now, a bilayer is considered as 
an example of  how to obtain unknown parameters. 
When a second layer exists on a first layer with 
known diffusion parameters, the first layer is chosen 
as a reference layer. If  the diffusion coefficient, D2, 
of  the second layer is known, an unknown para- 
meter, kl, at the interface can be determined as 

follows, q/2 is experimentally measured, then the 
corresponding dimensionless characteristic time, 
7-U2, is calculated by the relation, 7-1/2 = Dmtl/2/12,  
where m denotes a reference layer: the first layer in 
this case, k I is determined by comparison of 7-1/2 
thus obtained with the calculated 7-1/2 as a function 
of  the unknown parameter kl using the known para- 
meters, D1 and D 2 as can be seen in Fig. 4. On the 
other hand, if kl is known, the unknown D2 can be 
obtained as follows. The experimentally measured 
tl/2 gives 7-1/2, and 7-1/2 is compared with 7-1/2 as  a func- 
tion of  the unknown parameter al ;  then the corre- 
sponding oL 1 determines the D 2 to be obtained: 
D2 = oqDm. Repetition of this treatment can be 
extended to analysis of more than two multilayers. 
Other methods, like regression of  the whole transient 
proposed by Kimble and White [11], would also be 
possible using the present method. 

Compared to the usual finite difference analysis, the 
technique presented here is advantageous in some 
respects: it does not require small subintervals to 
obtain a precise value of  flux, and the solution is expli- 
citly given although it is in the form of the Laplace 
transform and, hence, some insight may be obtained 
in the transformed solution. There are also dis- 
advantages, for instance, the determination of  coef- 
ficients gi and h i in a complex matrix requires a wide 
range of  numbers to be handled in the computation 
particularly when the number of  layers is large. This 
may be overcome by using a multiple-precision 
routine for calculation as done by Shitara et al. [18] 
in their computation of heat conduction problems in 
multilayer systems where they employed Gaver's 
method [5]. This numerical inversion would be applic- 
able, not only to diffusion problems such as those pre- 
sented in this study but also to other problems in 
electrochemical systems, if they can be solved using 
the Laplace transforms. Of these, the analysis of the 
Laplace or the Poisson equation may be interesting 
in relation to potential or current distribution. 
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